Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
2.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676734

RESUMEN

CD8+ T cells outnumber CD4+ cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8+ T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter-driven chicken ovalbumin) to antigen-specific CD8+ T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8+ T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and ß2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8+ T cells in MS progression.


Asunto(s)
Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Axones/metabolismo , Neuronas/metabolismo , Progresión de la Enfermedad
3.
Neurol Clin Pract ; 13(3): e200153, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37197372

RESUMEN

Objectives: Febrile infection-related epilepsy syndrome (FIRES) is characterized by explosive onset refractory status epilepticus (RSE) in healthy individuals that is refractory to antiseizure medication (ASM), continuous anesthetic infusions (CIs), and immunomodulators. Recently, a case series of patients receiving intrathecal dexamethasone (IT-DEX) was reported with improved RSE control. Methods: We present a child with FIRES with favorable outcome after receiving concomitant anakinra and IT-DaEX. A 9-year-old male patient presented with encephalopathy following a febrile illness. He developed seizures evolving to RSE refractory to multiple ASM, 3 CIs, steroids, IVIG, plasmapheresis, ketogenic diet (KD), and anakinra. After continued seizures and inability to wean off CI, IT-DEX was initiated. Results: He received 6 doses of IT-DEX with resolution of RSE, rapid wean off CI, and improved inflammatory markers. At discharge, he was ambulating with assistance, speaking 2 languages, and ingesting food orally. Discussion: FIRES is a neurologically devastating syndrome with high mortality and morbidity. Proposed guidelines and various treatment strategies are becoming available in the literature. Although treatment with KD, anakinra, and tocilizumab has been successful in previous FIRES cases, our results suggest that the addition of IT-DEX may allow for faster weaning off CI and better cognitive outcomes when initiated early in the course.

4.
Epilepsia ; 64(6): 1444-1457, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039049

RESUMEN

New onset refractory status epilepticus (NORSE), including its subtype with a preceding febrile illness known as febrile infection-related epilepsy syndrome (FIRES), is one of the most severe forms of status epilepticus. The exact causes of NORSE are currently unknown, and there is so far no disease-specific therapy. Identifying the underlying pathophysiology and discovering specific biomarkers, whether immunologic, infectious, genetic, or other, may help physicians in the management of patients with NORSE. A broad spectrum of biomarkers has been proposed for status epilepticus patients, some of which were evaluated for patients with NORSE. Nonetheless, none has been validated, due to significant variabilities in study cohorts, collected biospecimens, applied analytical methods, and defined outcome endpoints, and to small sample sizes. The NORSE Institute established an open NORSE/FIRES biorepository for health-related data and biological samples allowing the collection of biospecimens worldwide, promoting multicenter research and sharing of data and specimens. Here, we suggest standard operating procedures for biospecimen collection and biobanking in this rare condition. We also propose criteria for the appropriate use of previously collected biospecimens. We predict that the widespread use of standardized procedures will reduce heterogeneity, facilitate the future identification of validated biomarkers for NORSE, and provide a better understanding of the pathophysiology and best clinical management for these patients.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Estado Epiléptico , Humanos , Bancos de Muestras Biológicas , Estado Epiléptico/tratamiento farmacológico , Convulsiones/complicaciones , Epilepsia Refractaria/terapia , Encefalitis/complicaciones , Biomarcadores
5.
Ann Clin Transl Neurol ; 10(5): 719-731, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924141

RESUMEN

OBJECTIVE: Therapeutic strategies for patients with febrile infection-related epilepsy syndrome (FIRES) are limited, ad hoc, and frequently ineffective. Based on evidence that inflammation drives pathogenesis in FIRES, we used ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) to characterize the monocytic response profile before and after therapy in a child successfully treated with dexamethasone delivered intrathecally six times between hospital Day 23 and 40 at 0.25 mg/kg/dose. METHODS: PBMCs were isolated from serial blood draws acquired during refractory status epilepticus (RSE) and following resolution associated with intrathecal dexamethasone therapy in a previously healthy 9-year-old male that presented with seizures following Streptococcal pharyngitis. Cells were stimulated with bacterial or viral ligands and cytokine release was measured and compared to responses in age-matched healthy control PBMCs. Levels of inflammatory factors in the blood and CSF were also measured and compared to pediatric healthy control ranges. RESULTS: During RSE, serum levels of IL6, CXCL8, HMGB1, S100A8/A9, and CRP were significantly elevated. IL6 was elevated in CSF. Ex vivo stimulation of PBMCs collected during RSE revealed hyperinflammatory release of IL6 and CXCL8 in response to bacterial stimulation. Following intrathecal dexamethasone, RSE resolved, inflammatory levels normalized in serum and CSF, and the PBMC hyperinflammatory response renormalized. SIGNIFICANCE: FIRES may be associated with a hyperinflammatory monocytic response to normally banal bacterial pathogens. This hyperinflammatory response may induce a profound neutrophil burden and the consequent release of factors that further exacerbate inflammation and drive neuroinflammation. Intrathecal dexamethasone may resolve RSE by resetting this inflammatory feedback loop.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Estado Epiléptico , Masculino , Humanos , Niño , Leucocitos Mononucleares , Monocitos , Interleucina-6 , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Epilepsia Refractaria/tratamiento farmacológico , Encefalitis/complicaciones , Inflamación/complicaciones , Dexametasona/farmacología
6.
J Neural Eng ; 20(1)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36538815

RESUMEN

Objective. To modify off-the-shelf components to build a device for collecting electroencephalography (EEG) from macroelectrodes surrounded by large fluid access ports sampled by an integrated microperfusion system in order to establish a method for sampling brain interstitial fluid (ISF) at the site of stimulation or seizure activity with no bias for molecular size.Approach. Twenty-four 560µm diameter holes were ablated through the sheath surrounding one platinum-iridium macroelectrode of a standard Spencer depth electrode using a femtosecond UV laser. A syringe pump was converted to push-pull configuration and connected to the fluidics catheter of a commercially available microdialysis system. The fluidics were inserted into the lumen of the modified Spencer electrode with the microdialysis membrane removed, converting the system to open flow microperfusion. Electrical performance and analyte recovery were measured and parameters were systematically altered to improve performance. An optimized device was tested in the pig brain and unbiased quantitative mass spectrometry was used to characterize the perfusate collected from the peri-electrode brain in response to stimulation.Main results. Optimized parameters resulted in >70% recovery of 70 kDa dextran from a tissue analog. The optimized device was implanted in the cortex of a pig and perfusate was collected during four 60 min epochs. Following a baseline epoch, the macroelectrode surrounded by microperfusion ports was stimulated at 2 Hz (0.7 mA, 200µs pulse width). Following a post-stimulation epoch, the cortex near the electrode was stimulated with benzylpenicillin to induce epileptiform activity. Proteomic analysis of the perfusates revealed a unique inflammatory signature induced by electrical stimulation. This signature was not detected in bulk tissue ISF.Significance. A modified dual-sensing electrode that permits coincident detection of EEG and ISF at the site of epileptiform neural activity may reveal novel pathogenic mechanisms and therapeutic targets that are otherwise undetectable at the bulk tissue level.


Asunto(s)
Líquido Extracelular , Proteómica , Animales , Porcinos , Líquido Extracelular/química , Encéfalo , Electrodos , Electroencefalografía
7.
Gastroenterology ; 164(2): 256-271.e10, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36272457

RESUMEN

BACKGROUND & AIMS: Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS: Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS: We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION: G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.


Asunto(s)
Linfocitos T CD4-Positivos , Colitis , Ratones , Humanos , Animales , Metabolismo de los Lípidos , Linfocitos T Reguladores/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Cromatina , Inflamación , Colesterol , Lípidos , Factores de Transcripción Forkhead/metabolismo
8.
J Transl Autoimmun ; 5: 100173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467614

RESUMEN

Objectives: We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens. Methods: Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4. Results: We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing. Significance: While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.

9.
Sci Rep ; 12(1): 19920, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402888

RESUMEN

Same day processing of biospecimens such as blood is not always feasible, which presents a challenge for research programs seeking to study a broad population or to characterize patients with rare diseases. Recruiting sites may not be equipped to process blood samples and variability in timing and technique employed to isolate peripheral blood mononuclear cells (PBMCs) at local sites may compromise reproducibility across patients. One solution is to send whole blood collected by routine phlebotomy via overnight courier to the testing site under ambient conditions. Determining the impact of shipping on subsequent leukocyte responses is a necessary prerequisite to any experimental analysis derived from transported samples. To this end, whole blood was collected from healthy control subjects and processed fresh or at 6, 24 and 48 h after collection and handling under modeled shipping conditions. At endpoint, whole blood was assessed via a complete blood count with differential and immunophenotyped using a standardized panel of antibodies [HLADR, CD66b, CD3, CD14, CD16]. PBMCs and neutrophils were isolated from whole blood and subjected to ex vivo stimulation with lipopolysaccharide and heat-killed Staphylococcus aureus. Stimulated release of cytokines and chemokines was assessed by cytometric bead array. RNA was also isolated from PBMCs to analyze transcriptional changes induced by shipping. The complete blood count with differential revealed that most parameters were maintained in shipped blood held for 24 h at ambient temperature. Immunophenotyping indicated preservation of cellular profiles at 24 h, although with broadening of some populations and a decrease in CD16 intensity on classical monocytes. At the transcriptional level, RNAseq analysis identified upregulation of a transcription factor module associated with inflammation in unstimulated PBMCs derived from whole blood shipped overnight. However, these changes were limited in both scale and number of impacted genes. Ex vivo stimulation of PBMCs further revealed preservation of functional responses in cells isolated from shipped blood held for 24 h at ambient temperature. However, neutrophil responses were largely abrogated by this time. By 48 h neither cell population responded within normal parameters. These findings indicate that robust immunophenotyping and PBMC stimulated response profiles are maintained in whole blood shipped overnight and processed within 24 h of collection, yielding results that are representative of those obtained from the sample immediately following venipuncture. This methodology is feasible for many patient recruitment sites to implement and allows for sophisticated immunological analysis of patient populations derived from large geographic areas. With regard to rare disease research, this meets a universal need to enroll patients in sufficient numbers for immunoprofiling and discovery of underlying pathogenic mechanisms.


Asunto(s)
Leucocitos Mononucleares , Monocitos , Reproducibilidad de los Resultados , Conservación de la Sangre/métodos , Fenotipo
10.
J Neuroinflammation ; 19(1): 258, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36261842

RESUMEN

The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.


Asunto(s)
Enfermedades Desmielinizantes , MicroARNs , Ratones , Animales , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo , Microglía/metabolismo , Citocinas/genética , Citocinas/metabolismo , Lisina , Interferones , Ubiquitina-Proteína Ligasas/metabolismo , Neuronas/metabolismo
11.
Ann Neurol ; 92(6): 1090-1101, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053822

RESUMEN

BACKGROUND AND OBJECTIVES: We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. METHODS: Septin-IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. RESULTS: Septin-IgGs were identified in 23 patients. All 8 patients with septin-5-IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co-existing septin-7-IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin-7 autoimmunity, without septin-5-IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre- and post-synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. INTERPRETATION: Septin-IgGs are predictive of distinct treatment-responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin-specific pathophysiology. ANN NEUROL 2022;92:1090-1101.


Asunto(s)
Encefalopatías , Enfermedades de la Médula Espinal , Animales , Ratas , Ratones , Septinas/metabolismo , Autoinmunidad , Neuronas/metabolismo , Inmunoglobulina G/metabolismo
12.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167854

RESUMEN

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Rejuvenecimiento , Envejecimiento , Animales , Encéfalo/metabolismo , Senescencia Celular/fisiología , Factores Quimiotácticos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Masculino , Ratones
14.
Front Mol Neurosci ; 15: 870868, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615063

RESUMEN

Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.

15.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197552

RESUMEN

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Astrocitos/metabolismo , Crotonatos/farmacología , Hidroxibutiratos/farmacología , Inflamación/metabolismo , Nitrilos/farmacología , Toluidinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Neuroinflammation ; 19(1): 22, 2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093106

RESUMEN

BACKGROUND: The pathogenic contribution of neuroinflammation to ictogenesis and epilepsy may provide a therapeutic target for reduction of seizure burden in patients that are currently underserved by traditional anti-seizure medications. The Theiler's murine encephalomyelitis virus (TMEV) model has provided important insights into the role of inflammation in ictogenesis, but questions remain regarding the relative contribution of microglia and inflammatory monocytes in this model. METHODS: Female C57BL/6 mice were inoculated by intracranial injection of 2 × 105, 5 × 104, 1.25 × 104, or 3.125 × 103 plaque-forming units (PFU) of the Daniel's strain of TMEV at 4-6 weeks of age. Infiltration of inflammatory monocytes, microglial activation, and cytokine production were measured at 24 h post-infection (hpi). Viral load, hippocampal injury, cognitive performance, and seizure burden were assessed at several timepoints. RESULTS: The intensity of inflammatory infiltration and the extent of hippocampal injury induced during TMEV encephalitis scaled with the amount of infectious virus in the initial inoculum. Cognitive performance was preserved in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV, but peak viral load at 72 hpi was equivalent between the inocula. CCL2 production in the brain was attenuated by 90% and TNFα and IL6 production was absent in mice inoculated with 1.25 × 104 PFU TMEV. Acute infiltration of inflammatory monocytes was attenuated by more than 80% in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV but microglial activation was equivalent between groups. Seizure burden was attenuated and the threshold to kainic acid-induced seizures was higher in mice inoculated with 1.25 × 104 PFU TMEV but low-level behavioral seizures persisted and the EEG exhibited reduced but detectable abnormalities. CONCLUSIONS: The size of the inflammatory monocyte response induced by TMEV scales with the amount of infectious virus in the initial inoculum, despite the development of equivalent peak infectious viral load. In contrast, the microglial response does not scale with the inoculum, as microglial hyper-ramification and increased Iba-1 expression were evident in mice inoculated with either 1.25 × 104 or 2 × 105 PFU TMEV. Inoculation conditions that drive inflammatory monocyte infiltration resulted in robust behavioral seizures and EEG abnormalities, but the low inoculum condition, associated with only microglial activation, drove a more subtle seizure and EEG phenotype.


Asunto(s)
Microglía , Theilovirus , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Monocitos/metabolismo , Convulsiones/patología
17.
Brain ; 145(4): 1379-1390, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34718426

RESUMEN

Neuromyelitis optica is an autoimmune inflammatory disorder targeting aquaporin-4 water channels in CNS astrocytes. Histopathological descriptions of astrocytic lesions reported in neuromyelitis optica so far have emphasized a characteristic loss of aquaporin-4, with deposition of IgG and complement and lysis of astrocytes, but sublytic reactions have been underappreciated. We performed a multi-modality study of 23 neuromyelitis optica autopsy cases (clinically and/or pathologically confirmed; 337 tissue blocks). By evaluating astrocytic morphology, immunohistochemistry and AQP4 RNA transcripts, and their associations with demyelinating activity, we documented a spectrum of astrocytopathy in addition to complement deposition, microglial reaction, granulocyte infiltration and regenerating activity. Within advanced demyelinating lesions, and in periplaque areas, there was remarkable hypertrophic astrogliosis, more subtle than astrocytic lysis. A degenerative component was suggested by 'dystrophic' morphology, cytoplasmic vacuolation, Rosenthal fibres and associated stress protein markers. The abundance of AQP4 mRNA transcripts in sublytic reactive astrocytes devoid of aquaporin-4 protein supported in vivo restoration following IgG-induced aquaporin-4 endocytosis/degradation. Astrocytic alterations extending beyond demyelinating lesions speak to astrocytopathy being an early and primary event in the evolving neuromyelitis optica lesion. Focal astrocytopathy observed without aquaporin-4 loss or lytic complement component deposition verifies that astrocytic reactions in neuromyelitis optica are not solely dependent on IgG-mediated aquaporin-4 loss or lysis by complement or by IgG-dependent leucocyte mediators. We conclude that neuromyelitis optica reflects a global astrocytopathy, initiated by binding of IgG to aquaporin-4 and not simply definable by demyelination and astrocytic lysis. The spectrum of astrocytic morphological changes in neuromyelitis optica attests to the complexity of factors influencing the range of astrocytic physiological responses to a targeted attack by aquaporin-4-specific IgG. Sublytic astrocytic reactions are no doubt an important determinant of the lesion's evolution and potential for repair. Pharmacological manipulation of the astrocytic stress response may offer new avenues for therapeutic intervention.


Asunto(s)
Neuromielitis Óptica , Acuaporina 4 , Astrocitos/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Neuromielitis Óptica/metabolismo
18.
J Neuroinflammation ; 18(1): 305, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34961522

RESUMEN

BACKGROUND: Microglia are the primary phagocytes of the central nervous system and are responsible for removing damaged myelin following demyelination. Previous investigations exploring the consequences of myelin phagocytosis on microglial activation overlooked the biochemical modifications present on myelin debris. Such modifications, including citrullination, are increased within the inflammatory environment of multiple sclerosis lesions. METHODS: Mouse cortical myelin isolated by ultracentrifugation was citrullinated ex vivo by incubation with the calcium-dependent peptidyl arginine deiminase PAD2. Demyelination was induced by 6 weeks of cuprizone (0.3%) treatment and spontaneous repair was initiated by reversion to normal chow. Citrullinated or unmodified myelin was injected into the primary motor cortex above the cingulum bundle at the time of reversion to normal chow and the consequent impact on remyelination was assessed by measuring the surface area of myelin basic protein-positive fibers in the cortex 3 weeks later. Microglial responses to myelin were characterized by measuring cytokine release, assessing flow cytometric markers of microglial activation, and RNAseq profiling of transcriptional changes. RESULTS: Citrullinated myelin induced a unique microglial response marked by increased tumor necrosis factor α (TNFα) production both in vitro and in vivo. This response was not induced by unmodified myelin. Injection of citrullinated myelin but not unmodified myelin into the cortex of cuprizone-demyelinated mice significantly inhibited spontaneous remyelination. Antibody-mediated neutralization of TNFα blocked this effect and restored remyelination to normal levels. CONCLUSIONS: These findings highlight the role of post-translation modifications such as citrullination in the determination of microglial activation in response to myelin during demyelination. The inhibition of endogenous repair induced by citrullinated myelin and the reversal of this effect by neutralization of TNFα may have implications for therapeutic approaches to patients with inflammatory demyelinating disorders.


Asunto(s)
Quelantes , Citrulina/química , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Microglía/metabolismo , Vaina de Mielina/química , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Células Cultivadas , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microinyecciones , Corteza Motora , Proteína Básica de Mielina
19.
Fluids Barriers CNS ; 18(1): 52, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852829

RESUMEN

Contemporary biomarker collection techniques in blood and cerebrospinal fluid have to date offered only modest clinical insights into neurologic diseases such as epilepsy and glioma. Conversely, the collection of human electroencephalography (EEG) data has long been the standard of care in these patients, enabling individualized insights for therapy and revealing fundamental principles of human neurophysiology. Increasing interest exists in simultaneously measuring neurochemical biomarkers and electrophysiological data to enhance our understanding of human disease mechanisms. This review compares microdialysis, microperfusion, and implanted EEG probe architectures and performance parameters. Invasive consequences of probe implantation are also investigated along with the functional impact of biofouling. Finally, previously developed microdialysis electrodes and microperfusion electrodes are reviewed in preclinical and clinical settings. Critically, current and precedent microdialysis and microperfusion probes lack the ability to collect neurochemical data that is spatially and temporally coincident with EEG data derived from depth electrodes. This ultimately limits diagnostic and therapeutic progress in epilepsy and glioma research. However, this gap also provides a unique opportunity to create a dual-sensing technology that will provide unprecedented insights into the pathogenic mechanisms of human neurologic disease.


Asunto(s)
Biomarcadores , Electrocorticografía , Microdiálisis , Enfermedades del Sistema Nervioso/diagnóstico , Monitorización Neurofisiológica , Humanos , Microdiálisis/instrumentación , Microdiálisis/métodos , Monitorización Neurofisiológica/instrumentación , Monitorización Neurofisiológica/métodos
20.
J Neurosci Methods ; 363: 109321, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390758

RESUMEN

BACKGROUND: Microdialysis is a well validated sampling technique that can be used for pharmacokinetic studies of oncological drugs targeting the central nervous system. This technique has also been applied to evaluate tumor metabolism and identify pharmacodynamic biomarkers of drug activity. Despite the potential utility of microdialysis for therapeutic discovery, variability in tumor size and location hamper routine use of microdialysis as a preclinical tool. Quantitative validation of microdialysis membrane location relative to radiographically evident tumor regions could facilitate rigorous preclinical studies. However, a widely accessible standardized workflow for preclinical catheter placement and validation is needed. NEW METHOD: We provide methods for a workflow to yield tailored placement of microdialysis probes within a murine intracranial tumor and illustrate in an IDH1-mutant patient-derived xenograft (PDX) model. This detailed workflow uses a freely available on-line tool built within 3D-slicer freeware to target microdialysis probe placement within the tumor core and validate probe placement fully within the tumor. RESULTS: We illustrate use of this workflow to validate microdialysis probe location relative to implanted IDH1-mutant PDXs, using the microdialysis probes to quantify levels of extracellular onco-metabolite D-2 hydroxyglutarate. COMPARISON WITH EXISTING METHODS: Previous methods have used 3D slicer to reliably measure tumor volumes. Prior microdialysis studies have targeted expected tumor locations without validation. CONCLUSIONS: The new method offers a streamlined and freely available workflow in 3D slicer to optimize and validate microdialysis probe placement within a murine brain tumor.


Asunto(s)
Neoplasias Encefálicas , Animales , Sistema Nervioso Central , Humanos , Ratones , Microdiálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...